With the release of Gazebo 4 came support for Oculus Rift. Since then, a team of students from the National University of Singapore have implemented an engaging and user-friendly software package for navigating through a simulation environment.

Mohit Shridhar, a 2nd year Computer Engineering student, and his partner David Tat Wai Lee, a 2nd year Industrial and Systems Engineering student, completed an internship at HopeTechnik where they had a chance to work with Gazebo and ROS for the first time. During their internship they worked on project SESTO, an AGV designed to carry medical supplies in hospitals. The target hospital was under construction, which left the team with no way to conduct proper tests. Mohit and David were tasked with simulating the AGV's navigation system in Gazebo along with a model of the hospital.

After creating models in Blender and Solidworks, Mohit and David discovered the Oculus Rift support in Gazebo. With the addition of a PS3 joystick, the team had a first-person perspective into the simulated environment. They quickly got carried away, and added a plethora of features to the Gazebo Navigator which can been seen in the video below.

For those interested in using the Oculus-Rift Gazebo Navigator; the code is available at https://github.com/MohitShridhar/oculus_gazebo_navigator.

During his internship with OSRF, Alex Henning developed FRCSim for the FIRST Robotics Competition (FRC). FRC is a competive high school robotics program where students build 120lb robots and compete against other robots while working on alliances. FRCSim is a set of plugins that integrates Gazebo and WPILib, the robot library used by teams, so that they can work together to allow the same code to run on FRC robots and on Gazebo simulated robots. Until recently, students on FRC teams needed access to physical robots to test their code, practice programming, and learn WPILib in just six short weeks. FRCSim currently ships with models of two actual robots and experimental support is on the way to allow teams to import their own robots into Gazebo.

Alex implemented WPILibSim in both Java and C++. He also developed Gazebo plugins for a variety of sensors and actuators, created a simplified installer for FRC teams and integrated with the WPILib Eclipse-based development tools. The current integration using the Eclipse plugins makes running the code in simulation almost identical to deploying for the real robot, the only difference is the user selects "Run in simulation" instead of "Deploy to robot". The plugin also ships with example programs that can be run and modified by students. Check out the following video for more information.

FRCSim is currently part of the closed FRC Beta and should be available to everyone in January, 2015. With its deployment, students will be given greater access to simulation environments to help them learn to program robots. It will also give them experience with simulation, which is being used more and more as part of modern robotics projects.


Download (4.0.0)

Changelog | Migration Guide | Roadmap

Highlights for 4.0.0

  • Vehicle suspension models
  • Oculus Rift support
  • Razer Hydra support
  • Copy and paste models via GUI
  • Custom road textures
  • Support for DART 4.1
  • Extruded polyline geometry

Website updates

We are moving a few web assets from gazebosim.org to externally hosted locations. This is done in an effort to reduce the maintenance effort required by OSRF. The following list details what resource are being moved:

Updated tutorials


We are making great progress on Gazebo's goals for version 4.0. The first item tackled is an updated tutorial system. Until now, Gazebo tutorials have resided on http://gazebosim.org/wiki/Tutorials. While the wiki format is convenient in many ways, it was not well suited to our needs. For instance, tutorial versioning is difficult, and there was limited edit control.

The new tutorial system is integrated directly into the main Gazebo website. Tutorial information is pulled directly from the new gazebo_tutorials Bitbucket repository. This approach supports the fork --> modify --> pull-request method of editing and creating new tutorials.

While we were at it, we gave the tutorials a face-lift and added version information to each tutorial. A dropdown in the upper-right of each tutorial allows you to switch between content appropriate for different versions of Gazebo. An Edit button, located directly to the right, allows you to quickly and easily modify the tutorial. For more information about creating and editing tutorials, please see the Contribution Tutorial.

Enjoy the new tutorials!