Building Editor

2015-01-08

The next major release of Gazebo is rapibly approaching. On January 26th, Gazebo 5.0.0 will be available. This new version offers many bug fixes and new features.

This post highlights a major improvment to the building editor, a graphical interface for creating indoor environments. Accessible via the Edit->Building Editor menu, this graphical interface provides the following new features:

  1. Improved measurement and layout tools
  2. Import 2D images, such as floor plans, to serve as guides
  3. Add color and texture to building elements

A tutorial is available, and the following video highlights the building editor features.

Support OSRF

2014-12-17

Cross posted from osrfoundation.org

When we started the ROS project back in 2007, our goal was to build an open robotics software platform for students, engineers, entrepreneurs, and anyone else to freely use and modify. In 2012, we took the next step by founding OSRF as an independent non-profit organization to pursue that mission, with responsibility for both Gazebo and ROS. Today, we see these tools used worldwide to teach concepts, solve problems, and build products in ways that we couldn’t have imagined at the beginning.

We couldn’t be happier with the size and breadth of the collaborative community that we’ve built together, and we’re grateful to everyone in the community for the roles that you’ve played.

You won’t be surprised to hear that it costs money to run OSRF. We employ a small team of amazing individuals, we operate an office in the Bay Area, and we run a suite of online services on which the community depends.

Since our founding, OSRF has enjoyed generous financial support from government agencies and private industry, for which we’re very grateful. We hope and anticipate that that support will continue in the future. But now, as we approach the end of OSRF’s third year, we’re trying something new: asking you, our users, for support.

If you rely on Gazebo and/or ROS in your lab, your startup company, your weekend projects, or elsewhere, please consider donating to OSRF. Your donation will support our people and infrastructure so that we can spend (even) more time developing and maintaining the software and services on which you depend.

As one example, if everyone who visits the ROS wiki between now and the end of the year donates just $2, we’ll have our costs covered for next year to manage, update, and host all of our online services, including the wiki. Donations in any amount are welcome. Give more, and we can do more.

Donate to OSRF today.

Thank you for your support.

Contributions to the Open Source Robotics Foundation, a 501(c)(3) non-profit organization, will be used at its discretion for its charitable purposes. Such donations are tax-deductible in the U.S. to the extent permitted by law.

Fluid Simulation

2014-12-01

An experimental particle based fluid simulation plugin has been added to Gazebo, which can be tested in the tutorials. In order to run the simulation an Nvidia graphics card with cuda support is required and to have Fluidix library installed.

The fluids simulation is based on the Smoothed-particle Hydrodynamics method. All the particle interactions are computed on the GPU, thus allowing us to simulate thousands of fluid particles at interactive speeds.

The interaction between the physics engine running in Gazebo and the fluid engine is done using a world plugin loaded in the .world file. This interaction represents a two way communication between the engines: first Gazebo sends all its collisions (object shapes) to be loaded in the fluid engine and initialises them with their current position and orientation. Afterwards the fluid is loaded with the given particle numbers and its volume. During runtime the collisions (object shapes) poses from Gazebo are constantly updated in the fluid engine, and interaction with the fluid are computed. As a response the fluid engine sends the forces and torques that are needed to be applied on the objects from Gazebo.

In order to visualise the fluid, the plugin also sends the current poses of all the particles on a topic to which a visualisation plugin is subscribed, and renders them over the current scene.

There are still many parts to be added to the simulation, some of them are mentioned at the end of the tutorial.

This work has been contributed by Andrei Haidu.

The Gazebo team at OSRF has been hard at work setting up a simulation environment for the DARPA HAPTIX project. The goal of HAPTIX is to "develop new science and technology to achieve closed-loop control of dexterous mechatronic prostheses that will provide amputees with prosthetic limb systems that feel and function like natural limbs".

Teams participating on HAPTIX will have access to a customized version of Gazebo that includes models for ARATand the Johns Hopkins APL arm. We have also developed a custom GUI interface, shown below, for testing and development purposes.

This project also marks the first time Windows and Matlab users can interact with Gazebo, thanks to our new cross-platform transport library. The scope is limited to the HAPTIX project, however plans are in motion to bring the entire Gazebo package to Windows.

If you are not a participant in the HAPTIX project, you can still check out the code and run through our tutorials. For more information visit the HAPTIX mini-page at http://gazebosim.org/haptix.

With the release of Gazebo 4 came support for Oculus Rift. Since then, a team of students from the National University of Singapore have implemented an engaging and user-friendly software package for navigating through a simulation environment.

Mohit Shridhar, a 2nd year Computer Engineering student, and his partner David Tat Wai Lee, a 2nd year Industrial and Systems Engineering student, completed an internship at HopeTechnik where they had a chance to work with Gazebo and ROS for the first time. During their internship they worked on project SESTO, an AGV designed to carry medical supplies in hospitals. The target hospital was under construction, which left the team with no way to conduct proper tests. Mohit and David were tasked with simulating the AGV's navigation system in Gazebo along with a model of the hospital.

After creating models in Blender and Solidworks, Mohit and David discovered the Oculus Rift support in Gazebo. With the addition of a PS3 joystick, the team had a first-person perspective into the simulated environment. They quickly got carried away, and added a plethora of features to the Gazebo Navigator which can been seen in the video below.

For those interested in using the Oculus-Rift Gazebo Navigator; the code is available at https://github.com/MohitShridhar/oculus_gazebo_navigator.