Gazebo Math

API Reference

6.15.1
ignition::math Namespace Reference

Math classes and function useful in robot applications. More...

Namespaces

 eigen3
 
 graph
 

Classes

class  AdditivelySeparableScalarField3
 The AdditivelySeparableScalarField3 class constructs a scalar field F in R^3 as a sum of scalar functions i.e. F(x, y, z) = k (p(x) + q(y) + r(z)). More...
 
class  Angle
 The Angle class is used to simplify and clarify the use of radians and degrees measurements. A default constructed Angle instance has a value of zero radians/degrees. More...
 
class  AxisAlignedBox
 Mathematical representation of a box that is aligned along an X,Y,Z axis. More...
 
class  BiQuad
 Bi-quad filter base class. More...
 
class  BiQuadVector3
 BiQuad vector3 filter. More...
 
class  Box
 A representation of a box. All units are in meters. More...
 
class  Capsule
 A representation of a capsule or sphere-capped cylinder. More...
 
class  Color
 Defines a color using a red (R), green (G), blue (B), and alpha (A) component. Each color component is in the range [0..1]. More...
 
class  Cylinder
 A representation of a cylinder. More...
 
class  DiffDriveOdometry
 Computes odometry values based on a set of kinematic properties and wheel speeds for a diff-drive vehicle. More...
 
class  Ellipsoid
 A representation of a general ellipsoid. More...
 
class  Filter
 Filter base class. More...
 
class  Frustum
 Mathematical representation of a frustum and related functions. This is also known as a view frustum. More...
 
class  GaussMarkovProcess
 Implementation of a stationary gauss-markov process, also known as a Ornstein Ulenbeck process. More...
 
class  Inertial
 The Inertial object provides a representation for the mass and inertia matrix of a body B. The components of the inertia matrix are expressed in what we call the "inertial" frame Bi of the body, i.e. the frame in which these inertia components are measured. The inertial frame Bi must be located at the center of mass of the body, but not necessarily aligned with the body’s frame. In addition, this class allows users to specify a frame F for these inertial properties by specifying the pose X_FBi of the inertial frame Bi in the inertial object frame F. More...
 
class  Interval
 The Interval class represents a range of real numbers. Intervals may be open (a, b), left-closed [a, b), right-closed (a, b], or fully closed [a, b]. More...
 
class  Kmeans
 K-Means clustering algorithm. Given a set of observations, k-means partitions the observations into k sets so as to minimize the within-cluster sum of squares. Description based on http://en.wikipedia.org/wiki/K-means_clustering. More...
 
class  Line2
 A two dimensional line segment. The line is defined by a start and end point. More...
 
class  Line3
 A three dimensional line segment. The line is defined by a start and end point. More...
 
class  MassMatrix3
 A class for inertial information about a rigid body consisting of the scalar mass and a 3x3 symmetric moment of inertia matrix stored as two Vector3's. More...
 
class  Material
 Contains information about a single material. More...
 
class  Matrix3
 A 3x3 matrix class. More...
 
class  Matrix4
 A 4x4 matrix class. More...
 
class  Matrix6
 A 6x6 matrix class. More...
 
class  MecanumDriveOdometry
 Computes odometry values based on a set of kinematic properties and wheel speeds for a Mecanum-drive vehicle. More...
 
class  MovingWindowFilter
 Base class for MovingWindowFilter. This replaces the version of MovingWindowFilter in the Ignition Common library. More...
 
class  OnePole
 A one-pole DSP filter. More...
 
class  OnePoleQuaternion
 One-pole quaternion filter. More...
 
class  OnePoleVector3
 One-pole vector3 filter. More...
 
class  OrientedBox
 Mathematical representation of a box which can be arbitrarily positioned and rotated. More...
 
class  PID
 Generic PID controller class. Generic proportional-integral-derivative controller class that keeps track of PID-error states and control inputs given the state of a system and a user specified target state. It includes a user-adjustable command offset term (feed-forward). More...
 
class  PiecewiseScalarField3
 The PiecewiseScalarField3 class constructs a scalar field F in R^3 as a union of scalar fields Pn, defined over regions Rn i.e. piecewise. More...
 
class  Plane
 A plane and related functions. More...
 
class  Polynomial3
 The Polynomial3 class represents a cubic polynomial with real coefficients p(x) = c0 x^3 + c1 x^2 + c2 x + c3. More...
 
class  Pose3
 Encapsulates a position and rotation in three space. More...
 
class  Quaternion
 A quaternion class. More...
 
class  Rand
 Random number generator class. More...
 
class  Region3
 The Region3 class represents the cartesian product of intervals Ix ✕ Iy ✕ Iz, one per axis, yielding an axis-aligned region of R^3 space. It can be thought of as an intersection of halfspaces. Regions may be open or closed in their boundaries, if any. More...
 
class  RollingMean
 A class that computes the mean over a series of data points. The window size determines the maximum number of data points. The oldest value is popped off when the window size is reached and a new value is pushed in. More...
 
class  RotationSpline
 Spline for rotations. More...
 
class  SemanticVersion
 Version comparison class based on Semantic Versioning 2.0.0 http://semver.org/ Compares versions and converts versions from string. More...
 
class  SignalMaxAbsoluteValue
 Computing the maximum of the absolute value of a discretely sampled signal. Also known as the maximum norm, infinity norm, or supremum norm. More...
 
class  SignalMaximum
 Computing the maximum value of a discretely sampled signal. More...
 
class  SignalMean
 Computing the mean value of a discretely sampled signal. More...
 
class  SignalMinimum
 Computing the minimum value of a discretely sampled signal. More...
 
class  SignalRootMeanSquare
 Computing the square root of the mean squared value of a discretely sampled signal. More...
 
class  SignalStatistic
 Statistical properties of a discrete time scalar signal. More...
 
class  SignalStats
 Collection of statistics for a scalar signal. More...
 
class  SignalVariance
 Computing the incremental variance of a discretely sampled signal. More...
 
class  SpeedLimiter
 Class to limit velocity, acceleration and jerk. More...
 
class  Sphere
 A representation of a sphere. More...
 
class  SphericalCoordinates
 Convert spherical coordinates for planetary surfaces. More...
 
class  Spline
 Splines. More...
 
class  Stopwatch
 The Stopwatch keeps track of time spent in the run state, accessed through ElapsedRunTime(), and time spent in the stop state, accessed through ElapsedStopTime(). Elapsed run time starts accumulating after the first call to Start(). Elapsed stop time starts accumulation after Start() has been called followed by Stop(). The stopwatch can be reset with the Reset() function. More...
 
class  Temperature
 A class that stores temperature information, and allows conversion between different units. More...
 
class  Triangle
 Triangle class and related functions. More...
 
class  Triangle3
 A 3-dimensional triangle and related functions. More...
 
class  Vector2
 Two dimensional (x, y) vector. More...
 
class  Vector3
 The Vector3 class represents the generic vector containing 3 elements. Since it's commonly used to keep coordinate system related information, its elements are labeled by x, y, z. More...
 
class  Vector3Stats
 Collection of statistics for a Vector3 signal. More...
 
class  Vector4
 T Generic x, y, z, w vector. More...
 

Typedefs

template<typename ScalarFunctionT >
using AdditivelySeparableScalarField3d = AdditivelySeparableScalarField3< ScalarFunctionT, double >
 
template<typename ScalarFunctionT >
using AdditivelySeparableScalarField3f = AdditivelySeparableScalarField3< ScalarFunctionT, float >
 
typedef Box< double > Boxd
 Box with double precision. More...
 
typedef Box< float > Boxf
 Box with float precision. More...
 
typedef Box< int > Boxi
 Box with integer precision. More...
 
typedef Capsule< double > Capsuled
 Capsule with double precision. More...
 
typedef Capsule< float > Capsulef
 Capsule with float precision. More...
 
typedef Capsule< int > Capsulei
 Capsule with integer precision. More...
 
using clock = std::chrono::steady_clock
 
typedef Cylinder< double > Cylinderd
 Cylinder with double precision. More...
 
typedef Cylinder< float > Cylinderf
 Cylinder with float precision. More...
 
typedef Cylinder< int > Cylinderi
 Cylinder with integer precision. More...
 
typedef std::chrono::duration< uint64_t, std::ratio< 86400 > > days
 This will exist in C++-20. More...
 
typedef Ellipsoid< double > Ellipsoidd
 Ellipsoid with double precision. More...
 
typedef Ellipsoid< float > Ellipsoidf
 Ellipsoid with float precision. More...
 
typedef Ellipsoid< int > Ellipsoidi
 Ellipsoid with integer precision. More...
 
typedef std::mt19937 GeneratorType
 
typedef Inertial< double > Inertiald
 
typedef Inertial< float > Inertialf
 
template<typename T >
using IntersectionPoints = std::set< Vector3< T >, WellOrderedVectors< T > >
 This is the type used for deduplicating and returning the set of intersections. More...
 
using Intervald = Interval< double >
 
using Intervalf = Interval< float >
 
typedef Line2< double > Line2d
 
typedef Line2< float > Line2f
 
typedef Line2< int > Line2i
 
typedef Line3< double > Line3d
 
typedef Line3< float > Line3f
 
typedef Line3< int > Line3i
 
typedef MassMatrix3< double > MassMatrix3d
 
typedef MassMatrix3< float > MassMatrix3f
 
typedef Matrix3< double > Matrix3d
 
typedef Matrix3< float > Matrix3f
 
typedef Matrix3< int > Matrix3i
 
typedef Matrix4< double > Matrix4d
 
typedef Matrix4< float > Matrix4f
 
typedef Matrix4< int > Matrix4i
 
typedef Matrix6< double > Matrix6d
 
typedef Matrix6< float > Matrix6f
 
typedef Matrix6< int > Matrix6i
 
typedef std::normal_distribution< double > NormalRealDist
 
typedef OrientedBox< double > OrientedBoxd
 
typedef OrientedBox< float > OrientedBoxf
 
typedef OrientedBox< int > OrientedBoxi
 
using PairInput = uint32_t
 
using PairOutput = uint64_t
 
template<typename ScalarField3T >
using PiecewiseScalarField3d = PiecewiseScalarField3< ScalarField3T, double >
 
template<typename ScalarField3T >
using PiecewiseScalarField3f = PiecewiseScalarField3< ScalarField3T, float >
 
typedef Plane< double > Planed
 
typedef Plane< float > Planef
 
typedef Plane< int > Planei
 
using Polynomial3d = Polynomial3< double >
 
using Polynomial3f = Polynomial3< float >
 
typedef Pose3< double > Pose3d
 
typedef Pose3< float > Pose3f
 
typedef Pose3< int > Pose3i
 
typedef Quaternion< double > Quaterniond
 
typedef Quaternion< float > Quaternionf
 
typedef Quaternion< int > Quaternioni
 
using Region3d = Region3< double >
 
using Region3f = Region3< float >
 
typedef Sphere< double > Sphered
 Sphere with double precision. More...
 
typedef Sphere< float > Spheref
 Sphere with float precision. More...
 
typedef Sphere< int > Spherei
 Sphere with integer precision. More...
 
typedef Triangle3< double > Triangle3d
 Double specialization of the Triangle class. More...
 
typedef Triangle3< float > Triangle3f
 Float specialization of the Triangle class. More...
 
typedef Triangle3< int > Triangle3i
 Integer specialization of the Triangle class. More...
 
typedef Triangle< double > Triangled
 Double specialization of the Triangle class. More...
 
typedef Triangle< float > Trianglef
 Float specialization of the Triangle class. More...
 
typedef Triangle< int > Trianglei
 Integer specialization of the Triangle class. More...
 
typedef std::uniform_int_distribution< int32_t > UniformIntDist
 
typedef std::uniform_real_distribution< double > UniformRealDist
 
typedef Vector2< double > Vector2d
 
typedef Vector2< float > Vector2f
 
typedef Vector2< int > Vector2i
 
typedef Vector3< double > Vector3d
 
typedef Vector3< float > Vector3f
 
typedef Vector3< int > Vector3i
 
typedef Vector4< double > Vector4d
 
typedef Vector4< float > Vector4f
 
typedef Vector4< int > Vector4i
 

Enumerations

enum  MaterialType {
  STYROFOAM = 0, PINE, WOOD, OAK,
  PLASTIC, CONCRETE, ALUMINUM, STEEL_ALLOY,
  STEEL_STAINLESS, IRON, BRASS, COPPER,
  TUNGSTEN, UNKNOWN_MATERIAL
}
 This enum lists the supported material types. A value can be used to create a Material instance. Source: https://en.wikipedia.org/wiki/Density. More...
 

Functions

template<>
void appendToStream (std::ostream &_out, int _number)
 Append a number to a stream, specialized for int. More...
 
template<typename T >
void appendToStream (std::ostream &_out, T _number)
 Append a number to a stream. Makes sure "-0" is returned as "0". More...
 
template<class... Durations, class DurationIn >
std::tuple< Durations... > breakDownDurations (DurationIn d)
 break down durations NOTE: the template arguments must be properly ordered according to magnitude and there can be no duplicates. This function uses the braces initializer to split all the templated duration. The initializer will be called recursievely due the ... More...
 
template<typename T >
clamp (T _v, T _min, T _max)
 Simple clamping function. More...
 
std::pair< int64_t, int64_t > durationToSecNsec (const std::chrono::steady_clock::duration &_dur)
 Convert a std::chrono::steady_clock::duration to a seconds and nanoseconds pair. More...
 
std::string durationToString (const std::chrono::steady_clock::duration &_duration)
 Convert a std::chrono::steady_clock::duration to a string. More...
 
template<typename T >
bool equal (const T &_a, const T &_b, const T &_epsilon=T(1e-6))
 check if two values are equal, within a tolerance More...
 
double fixnan (double _v)
 Fix a nan value. More...
 
float fixnan (float _v)
 Fix a nan value. More...
 
template<typename T >
bool greaterOrNearEqual (const T &_a, const T &_b, const T &_epsilon=1e-6)
 inequality test, within a tolerance More...
 
bool isEven (const int _v)
 Check if parameter is even. More...
 
bool isEven (const unsigned int _v)
 Check if parameter is even. More...
 
bool isnan (double _v)
 check if a double is NaN More...
 
bool isnan (float _v)
 check if a float is NaN More...
 
bool isOdd (const int _v)
 Check if parameter is odd. More...
 
bool isOdd (const unsigned int _v)
 Check if parameter is odd. More...
 
bool isPowerOfTwo (unsigned int _x)
 Is this a power of 2? More...
 
bool isTimeString (const std::string &_timeString)
 Check if the given string represents a time. An example time string is "0 00:00:00.000", which has the format "DAYS HOURS:MINUTES:SECONDS.MILLISECONDS". More...
 
template<typename T >
bool lessOrNearEqual (const T &_a, const T &_b, const T &_epsilon=1e-6)
 inequality test, within a tolerance More...
 
template<typename T >
max (const std::vector< T > &_values)
 get the maximum value of vector of values More...
 
template<typename T >
mean (const std::vector< T > &_values)
 get mean of vector of values More...
 
template<typename T >
min (const std::vector< T > &_values)
 get the minimum value of vector of values More...
 
PairOutput Pair (const PairInput _a, const PairInput _b)
 A pairing function that maps two values to a unique third value. This is an implement of Szudzik's function. More...
 
double parseFloat (const std::string &_input)
 parse string into float More...
 
int parseInt (const std::string &_input)
 parse string into an integer More...
 
template<typename T >
precision (const T &_a, const unsigned int &_precision)
 get value at a specified precision More...
 
int roundUpMultiple (int _num, int _multiple)
 Round a number up to the nearest multiple. For example, if the input number is 12 and the multiple is 10, the result is 20. If the input number is negative, then the nearest multiple will be greater than or equal to the input number. For example, if the input number is -9 and the multiple is 2 then the output is -8. More...
 
unsigned int roundUpPowerOfTwo (unsigned int _x)
 Get the smallest power of two that is greater or equal to a given value. More...
 
std::chrono::steady_clock::duration secNsecToDuration (const uint64_t &_sec, const uint64_t &_nanosec)
 Convert seconds and nanoseconds to std::chrono::steady_clock::duration. More...
 
std::chrono::steady_clock::time_point secNsecToTimePoint (const uint64_t &_sec, const uint64_t &_nanosec)
 Convert seconds and nanoseconds to std::chrono::steady_clock::time_point. More...
 
template<typename T >
int sgn (T _value)
 The signum function. More...
 
template<typename T >
int signum (T _value)
 The signum function. More...
 
template<typename T >
void sort2 (T &_a, T &_b)
 Sort two numbers, such that _a <= _b. More...
 
template<typename T >
void sort3 (T &_a, T &_b, T &_c)
 Sort three numbers, such that _a <= _b <= _c. More...
 
bool splitTimeBasedOnTimeRegex (const std::string &_timeString, uint64_t &numberDays, uint64_t &numberHours, uint64_t &numberMinutes, uint64_t &numberSeconds, uint64_t &numberMilliseconds)
 Split a std::chrono::steady_clock::duration to a string. More...
 
std::chrono::steady_clock::duration stringToDuration (const std::string &_timeString)
 Convert a string to a std::chrono::steady_clock::duration. More...
 
std::chrono::steady_clock::time_point stringToTimePoint (const std::string &_timeString)
 Convert a string to a std::chrono::steady_clock::time_point. More...
 
std::pair< int64_t, int64_t > timePointToSecNsec (const std::chrono::steady_clock::time_point &_time)
 Convert a std::chrono::steady_clock::time_point to a seconds and nanoseconds pair. More...
 
std::string timePointToString (const std::chrono::steady_clock::time_point &_point)
 Convert a std::chrono::steady_clock::time_point to a string. More...
 
std::tuple< PairInput, PairInputUnpair (const PairOutput _key)
 The reverse of the Pair function. Accepts a key, produced from the Pair function, and returns a tuple consisting of the two non-negative integer values used to create the _key. More...
 
template<typename T >
variance (const std::vector< T > &_values)
 get variance of vector of values More...
 

Variables

static const double DPRCT_INF_D = INF_D
 
static const float DPRCT_INF_F = INF_F
 
static const int16_t DPRCT_INF_I16 = INF_I16
 
static const int32_t DPRCT_INF_I32 = INF_I32
 
static const int64_t DPRCT_INF_I64 = INF_I64
 
static const uint16_t DPRCT_INF_UI16 = INF_UI16
 
static const uint32_t DPRCT_INF_UI32 = INF_UI32
 
static const uint64_t DPRCT_INF_UI64 = INF_UI64
 
static const double DPRCT_LOW_D = LOW_D
 
static const float DPRCT_LOW_F = LOW_F
 
static const int16_t DPRCT_LOW_I16 = LOW_I16
 
static const int32_t DPRCT_LOW_I32 = LOW_I32
 
static const int64_t DPRCT_LOW_I64 = LOW_I64
 
static const uint16_t DPRCT_LOW_UI16 = LOW_UI16
 
static const uint32_t DPRCT_LOW_UI32 = LOW_UI32
 
static const uint64_t DPRCT_LOW_UI64 = LOW_UI64
 
static const double DPRCT_MAX_D = MAX_D
 
static const float DPRCT_MAX_F = MAX_F
 
static const int16_t DPRCT_MAX_I16 = MAX_I16
 
static const int32_t DPRCT_MAX_I32 = MAX_I32
 
static const int64_t DPRCT_MAX_I64 = MAX_I64
 
static const uint16_t DPRCT_MAX_UI16 = MAX_UI16
 
static const uint32_t DPRCT_MAX_UI32 = MAX_UI32
 
static const uint64_t DPRCT_MAX_UI64 = MAX_UI64
 
static const double DPRCT_MIN_D = MIN_D
 
static const float DPRCT_MIN_F = MIN_F
 
static const int16_t DPRCT_MIN_I16 = MIN_I16
 
static const int32_t DPRCT_MIN_I32 = MIN_I32
 
static const int64_t DPRCT_MIN_I64 = MIN_I64
 
static const uint16_t DPRCT_MIN_UI16 = MIN_UI16
 
static const uint32_t DPRCT_MIN_UI32 = MIN_UI32
 
static const uint64_t DPRCT_MIN_UI64 = MIN_UI64
 
static const size_t IGN_EIGHT_SIZE_T = 8u
 size_t type with a value of 8 More...
 
static const size_t IGN_FIVE_SIZE_T = 5u
 size_t type with a value of 5 More...
 
static const size_t IGN_FOUR_SIZE_T = 4u
 size_t type with a value of 4 More...
 
static const size_t IGN_NINE_SIZE_T = 9u
 size_t type with a value of 9 More...
 
static const size_t IGN_ONE_SIZE_T = 1u
 size_t type with a value of 1 More...
 
static const size_t IGN_SEVEN_SIZE_T = 7u
 size_t type with a value of 7 More...
 
static const size_t IGN_SIX_SIZE_T = 6u
 size_t type with a value of 6 More...
 
static const size_t IGN_THREE_SIZE_T = 3u
 size_t type with a value of 3 More...
 
static const size_t IGN_TWO_SIZE_T = 2u
 size_t type with a value of 2 More...
 
static const size_t IGN_ZERO_SIZE_T = 0u
 size_t type with a value of 0 More...
 
static const double INF_D = std::numeric_limits<double>::infinity()
 Double positive infinite value. More...
 
static const float INF_F = std::numeric_limits<float>::infinity()
 float positive infinite value More...
 
static const int16_t INF_I16 = std::numeric_limits<int16_t>::infinity()
 16-bit unsigned integer positive infinite value More...
 
static const int32_t INF_I32 = std::numeric_limits<int32_t>::infinity()
 32-bit unsigned integer positive infinite value More...
 
static const int64_t INF_I64 = std::numeric_limits<int64_t>::infinity()
 64-bit unsigned integer positive infinite value More...
 
static const uint16_t INF_UI16 = std::numeric_limits<uint16_t>::infinity()
 16-bit unsigned integer positive infinite value More...
 
static const uint32_t INF_UI32 = std::numeric_limits<uint32_t>::infinity()
 32-bit unsigned integer positive infinite value More...
 
static const uint64_t INF_UI64 = std::numeric_limits<uint64_t>::infinity()
 64-bit unsigned integer positive infinite value More...
 
static const double LOW_D = std::numeric_limits<double>::lowest()
 Double low value, equivalent to -MAX_D. More...
 
static const float LOW_F = std::numeric_limits<float>::lowest()
 Float low value, equivalent to -MAX_F. More...
 
static const int16_t LOW_I16 = std::numeric_limits<int16_t>::lowest()
 16bit unsigned integer lowest value. This is equivalent to IGN_INT16_MIN, and is defined here for completeness. More...
 
static const int32_t LOW_I32 = std::numeric_limits<int32_t>::lowest()
 32bit unsigned integer lowest value. This is equivalent to IGN_INT32_MIN, and is defined here for completeness. More...
 
static const int64_t LOW_I64 = std::numeric_limits<int64_t>::lowest()
 64bit unsigned integer lowest value. This is equivalent to IGN_INT64_MIN, and is defined here for completeness. More...
 
static const uint16_t LOW_UI16 = std::numeric_limits<uint16_t>::lowest()
 16bit unsigned integer lowest value. This is equivalent to IGN_UINT16_MIN, and is defined here for completeness. More...
 
static const uint32_t LOW_UI32 = std::numeric_limits<uint32_t>::lowest()
 32bit unsigned integer lowest value. This is equivalent to IGN_UINT32_MIN, and is defined here for completeness. More...
 
static const uint64_t LOW_UI64 = std::numeric_limits<uint64_t>::lowest()
 64bit unsigned integer lowest value. This is equivalent to IGN_UINT64_MIN, and is defined here for completeness. More...
 
static const double MAX_D = std::numeric_limits<double>::max()
 Double maximum value. This value will be similar to 1.79769e+308. More...
 
static const float MAX_F = std::numeric_limits<float>::max()
 Float maximum value. This value will be similar to 3.40282e+38. More...
 
static const int16_t MAX_I16 = std::numeric_limits<int16_t>::max()
 16bit unsigned integer maximum value More...
 
static const int32_t MAX_I32 = std::numeric_limits<int32_t>::max()
 32bit unsigned integer maximum value More...
 
static const int64_t MAX_I64 = std::numeric_limits<int64_t>::max()
 64bit unsigned integer maximum value More...
 
static const uint16_t MAX_UI16 = std::numeric_limits<uint16_t>::max()
 16bit unsigned integer maximum value More...
 
static const uint32_t MAX_UI32 = std::numeric_limits<uint32_t>::max()
 32bit unsigned integer maximum value More...
 
static const uint64_t MAX_UI64 = std::numeric_limits<uint64_t>::max()
 64bit unsigned integer maximum value More...
 
static const double MIN_D = std::numeric_limits<double>::min()
 Double min value. This value will be similar to 2.22507e-308. More...
 
static const float MIN_F = std::numeric_limits<float>::min()
 Float minimum value. This value will be similar to 1.17549e-38. More...
 
static const int16_t MIN_I16 = std::numeric_limits<int16_t>::min()
 16bit unsigned integer minimum value More...
 
static const int32_t MIN_I32 = std::numeric_limits<int32_t>::min()
 32bit unsigned integer minimum value More...
 
static const int64_t MIN_I64 = std::numeric_limits<int64_t>::min()
 64bit unsigned integer minimum value More...
 
static const uint16_t MIN_UI16 = std::numeric_limits<uint16_t>::min()
 16bit unsigned integer minimum value More...
 
static const uint32_t MIN_UI32 = std::numeric_limits<uint32_t>::min()
 32bit unsigned integer minimum value More...
 
static const uint64_t MIN_UI64 = std::numeric_limits<uint64_t>::min()
 64bit unsigned integer minimum value More...
 
static const double NAN_D = std::numeric_limits<double>::quiet_NaN()
 Returns the representation of a quiet not a number (NAN) More...
 
static const float NAN_F = std::numeric_limits<float>::quiet_NaN()
 Returns the representation of a quiet not a number (NAN) More...
 
static const int NAN_I = std::numeric_limits<int>::quiet_NaN()
 Returns the representation of a quiet not a number (NAN) More...
 
static const std::regex time_regex ("^([0-9]+ ){0,1}" "(?:([1-9]:|[0-1][0-9]:|2[0-3]:){0,1}" "([0-9]:|[0-5][0-9]:)){0,1}" "(?:([0-9]|[0-5][0-9]){0,1}" "(\\.[0-9]{1,3}){0,1})$")
 

Detailed Description

Math classes and function useful in robot applications.

Typedef Documentation

◆ AdditivelySeparableScalarField3d

◆ AdditivelySeparableScalarField3f

◆ Boxd

Box< double > Boxd

Box with double precision.

◆ Boxf

Box< float > Boxf

Box with float precision.

◆ Boxi

Box< int > Boxi

Box with integer precision.

◆ Capsuled

Capsule< double > Capsuled

Capsule with double precision.

◆ Capsulef

Capsule< float > Capsulef

Capsule with float precision.

◆ Capsulei

Capsule< int > Capsulei

Capsule with integer precision.

◆ clock

◆ Cylinderd

Cylinder< double > Cylinderd

Cylinder with double precision.

◆ Cylinderf

Cylinder< float > Cylinderf

Cylinder with float precision.

◆ Cylinderi

Cylinder with integer precision.

◆ days

typedef std::chrono::duration<uint64_t, std::ratio<86400> > days

This will exist in C++-20.

◆ Ellipsoidd

Ellipsoid< double > Ellipsoidd

Ellipsoid with double precision.

◆ Ellipsoidf

Ellipsoid with float precision.

◆ Ellipsoidi

Ellipsoid with integer precision.

◆ GeneratorType

◆ Inertiald

typedef Inertial<double> Inertiald

◆ Inertialf

typedef Inertial<float> Inertialf

◆ IntersectionPoints

using IntersectionPoints = std::set<Vector3<T>, WellOrderedVectors<T> >

This is the type used for deduplicating and returning the set of intersections.

◆ Intervald

using Intervald = Interval<double>

◆ Intervalf

using Intervalf = Interval<float>

◆ Line2d

typedef Line2<double> Line2d

◆ Line2f

typedef Line2<float> Line2f

◆ Line2i

typedef Line2<int> Line2i

◆ Line3d

typedef Line3<double> Line3d

◆ Line3f

typedef Line3<float> Line3f

◆ Line3i

typedef Line3<int> Line3i

◆ MassMatrix3d

typedef MassMatrix3<double> MassMatrix3d

◆ MassMatrix3f

typedef MassMatrix3<float> MassMatrix3f

◆ Matrix3d

typedef Matrix3<double> Matrix3d

◆ Matrix3f

typedef Matrix3<float> Matrix3f

◆ Matrix3i

typedef Matrix3<int> Matrix3i

◆ Matrix4d

typedef Matrix4<double> Matrix4d

◆ Matrix4f

typedef Matrix4<float> Matrix4f

◆ Matrix4i

typedef Matrix4<int> Matrix4i

◆ Matrix6d

typedef Matrix6<double> Matrix6d

◆ Matrix6f

typedef Matrix6<float> Matrix6f

◆ Matrix6i

typedef Matrix6<int> Matrix6i

◆ NormalRealDist

◆ OrientedBoxd

typedef OrientedBox<double> OrientedBoxd

◆ OrientedBoxf

typedef OrientedBox<float> OrientedBoxf

◆ OrientedBoxi

typedef OrientedBox<int> OrientedBoxi

◆ PairInput

using PairInput = uint32_t

◆ PairOutput

using PairOutput = uint64_t

◆ PiecewiseScalarField3d

using PiecewiseScalarField3d = PiecewiseScalarField3<ScalarField3T, double>

◆ PiecewiseScalarField3f

using PiecewiseScalarField3f = PiecewiseScalarField3<ScalarField3T, float>

◆ Planed

typedef Plane<double> Planed

◆ Planef

typedef Plane<float> Planef

◆ Planei

typedef Plane<int> Planei

◆ Polynomial3d

using Polynomial3d = Polynomial3<double>

◆ Polynomial3f

using Polynomial3f = Polynomial3<float>

◆ Pose3d

typedef Pose3<double> Pose3d

◆ Pose3f

typedef Pose3<float> Pose3f

◆ Pose3i

typedef Pose3<int> Pose3i

◆ Quaterniond

typedef Quaternion<double> Quaterniond

◆ Quaternionf

typedef Quaternion<float> Quaternionf

◆ Quaternioni

typedef Quaternion<int> Quaternioni

◆ Region3d

using Region3d = Region3<double>

◆ Region3f

using Region3f = Region3<float>

◆ Sphered

Sphere< double > Sphered

Sphere with double precision.

◆ Spheref

Sphere< float > Spheref

Sphere with float precision.

◆ Spherei

Sphere< int > Spherei

Sphere with integer precision.

◆ Triangle3d

typedef Triangle3<double> Triangle3d

Double specialization of the Triangle class.

◆ Triangle3f

typedef Triangle3<float> Triangle3f

Float specialization of the Triangle class.

◆ Triangle3i

typedef Triangle3<int> Triangle3i

Integer specialization of the Triangle class.

◆ Triangled

typedef Triangle<double> Triangled

Double specialization of the Triangle class.

◆ Trianglef

typedef Triangle<float> Trianglef

Float specialization of the Triangle class.

◆ Trianglei

typedef Triangle<int> Trianglei

Integer specialization of the Triangle class.

◆ UniformIntDist

◆ UniformRealDist

◆ Vector2d

typedef Vector2<double> Vector2d

◆ Vector2f

typedef Vector2<float> Vector2f

◆ Vector2i

typedef Vector2<int> Vector2i

◆ Vector3d

typedef Vector3<double> Vector3d

◆ Vector3f

typedef Vector3<float> Vector3f

◆ Vector3i

typedef Vector3<int> Vector3i

◆ Vector4d

typedef Vector4<double> Vector4d

◆ Vector4f

typedef Vector4<float> Vector4f

◆ Vector4i

typedef Vector4<int> Vector4i

Enumeration Type Documentation

◆ MaterialType

enum MaterialType
strong

This enum lists the supported material types. A value can be used to create a Material instance. Source: https://en.wikipedia.org/wiki/Density.

See also
Material
Enumerator
STYROFOAM 

Styrofoam, density = 75.0 kg/m^3 String name = "styrofoam".

PINE 

Pine, density = 373.0 kg/m^3 String name = "pine".

WOOD 

Wood, density = 700.0 kg/m^3 String name = "wood".

OAK 

Oak, density = 710.0 kg/m^3 String name = "oak".

PLASTIC 

Plastic, density = 1175.0 kg/m^3 String name = "plastic".

CONCRETE 

Concrete, density = 2000.0 kg/m^3 String name = "concrete".

ALUMINUM 

Aluminum, density = 2700.0 kg/m^3 String name = "aluminum".

STEEL_ALLOY 

Steel alloy, density = 7600.0 kg/m^3 String name = "steel_alloy".

STEEL_STAINLESS 

Stainless steel, density = 7800.0 kg/m^3 String name = "steel_stainless".

IRON 

Iron, density = 7870.0 kg/m^3 String name = "iron".

BRASS 

Brass, density = 8600.0 kg/m^3 String name = "brass".

COPPER 

Copper, density = 8940.0 kg/m^3 String name = "copper".

TUNGSTEN 

Tungsten, density = 19300.0 kg/m^3 String name = "tungsten".

UNKNOWN_MATERIAL 

Represents an invalid or unknown material.

Function Documentation

◆ appendToStream() [1/2]

void ignition::math::appendToStream ( std::ostream _out,
int  _number 
)
inline

Append a number to a stream, specialized for int.

Parameters
[out]_outOutput stream.
[in]_numberNumber to append.

◆ appendToStream() [2/2]

void ignition::math::appendToStream ( std::ostream _out,
_number 
)
inline

Append a number to a stream. Makes sure "-0" is returned as "0".

Parameters
[out]_outOutput stream.
[in]_numberNumber to append.

References std::fpclassify().

◆ breakDownDurations()

std::tuple<Durations...> ignition::math::breakDownDurations ( DurationIn  d)

break down durations NOTE: the template arguments must be properly ordered according to magnitude and there can be no duplicates. This function uses the braces initializer to split all the templated duration. The initializer will be called recursievely due the ...

Parameters
[in]dDuration to break down
Returns
A tuple based on the durations specified

Referenced by durationToString(), and timePointToString().

◆ clamp()

◆ durationToSecNsec()

std::pair<int64_t, int64_t> ignition::math::durationToSecNsec ( const std::chrono::steady_clock::duration &  _dur)
inline

Convert a std::chrono::steady_clock::duration to a seconds and nanoseconds pair.

Parameters
[in]_durThe duration to convert.
Returns
A pair where the first element is the number of seconds and the second is the number of nanoseconds.

◆ durationToString()

std::string ignition::math::durationToString ( const std::chrono::steady_clock::duration &  _duration)
inline

Convert a std::chrono::steady_clock::duration to a string.

Parameters
[in]_durationThe std::chrono::steady_clock::duration to convert.
Returns
A string formatted with the duration

References breakDownDurations(), std::fixed(), std::setfill(), std::setprecision(), and std::setw().

◆ equal()

bool ignition::math::equal ( const T &  _a,
const T &  _b,
const T &  _epsilon = T(1e-6) 
)
inline

check if two values are equal, within a tolerance

Parameters
[in]_athe first value
[in]_bthe second value
[in]_epsilonthe tolerance

References IGN_FP_VOLATILE.

Referenced by Line2< T >::Collinear(), Quaternion< Precision >::Correct(), Quaternion< Precision >::Equal(), Line2< T >::Intersect(), Triangle3< T >::Intersects(), Matrix4< T >::IsAffine(), Line2< T >::Parallel(), and Line2< T >::Slope().

◆ fixnan() [1/2]

double ignition::math::fixnan ( double  _v)
inline

Fix a nan value.

Parameters
[in]_vValue to correct.
Returns
0 if _v is NaN, _v otherwise.

References std::isinf(), and isnan().

◆ fixnan() [2/2]

float ignition::math::fixnan ( float  _v)
inline

Fix a nan value.

Parameters
[in]_vValue to correct.
Returns
0 if _v is NaN, _v otherwise.

References std::isinf(), and isnan().

◆ greaterOrNearEqual()

bool ignition::math::greaterOrNearEqual ( const T &  _a,
const T &  _b,
const T &  _epsilon = 1e-6 
)
inline

inequality test, within a tolerance

Parameters
[in]_athe first value
[in]_bthe second value
[in]_epsilonthe tolerance

◆ isEven() [1/2]

bool ignition::math::isEven ( const int  _v)
inline

Check if parameter is even.

Parameters
[in]_vValue to check.
Returns
True if _v is even.

◆ isEven() [2/2]

bool ignition::math::isEven ( const unsigned int  _v)
inline

Check if parameter is even.

Parameters
[in]_vValue to check.
Returns
True if _v is even.

◆ isnan() [1/2]

bool ignition::math::isnan ( double  _v)
inline

check if a double is NaN

Parameters
[in]_vthe value
Returns
true if _v is not a number, false otherwise

References std::isnan().

◆ isnan() [2/2]

bool ignition::math::isnan ( float  _v)
inline

check if a float is NaN

Parameters
[in]_vthe value
Returns
true if _v is not a number, false otherwise

References std::isnan().

Referenced by Polynomial3< T >::Evaluate(), and fixnan().

◆ isOdd() [1/2]

bool ignition::math::isOdd ( const int  _v)
inline

Check if parameter is odd.

Parameters
[in]_vValue to check.
Returns
True if _v is odd.

◆ isOdd() [2/2]

bool ignition::math::isOdd ( const unsigned int  _v)
inline

Check if parameter is odd.

Parameters
[in]_vValue to check.
Returns
True if _v is odd.

◆ isPowerOfTwo()

bool ignition::math::isPowerOfTwo ( unsigned int  _x)
inline

Is this a power of 2?

Parameters
[in]_xthe number
Returns
true if _x is a power of 2, false otherwise

Referenced by roundUpPowerOfTwo().

◆ isTimeString()

bool ignition::math::isTimeString ( const std::string _timeString)
inline

Check if the given string represents a time. An example time string is "0 00:00:00.000", which has the format "DAYS HOURS:MINUTES:SECONDS.MILLISECONDS".

Returns
True if the regex was able to split the string otherwise False

References string::empty(), string::erase(), string::length(), std::regex_search(), smatch::size(), std::stoi(), and time_regex.

◆ lessOrNearEqual()

bool ignition::math::lessOrNearEqual ( const T &  _a,
const T &  _b,
const T &  _epsilon = 1e-6 
)
inline

inequality test, within a tolerance

Parameters
[in]_athe first value
[in]_bthe second value
[in]_epsilonthe tolerance

◆ max()

T ignition::math::max ( const std::vector< T > &  _values)
inline

get the maximum value of vector of values

Parameters
[in]_valuesthe vector of values
Returns
maximum

References numeric_limits::min(), and vector< T >::size().

◆ mean()

T ignition::math::mean ( const std::vector< T > &  _values)
inline

get mean of vector of values

Parameters
[in]_valuesthe vector of values
Returns
the mean

References vector< T >::size().

Referenced by ignition::math::eigen3::verticesToOrientedBox().

◆ min()

T ignition::math::min ( const std::vector< T > &  _values)
inline

get the minimum value of vector of values

Parameters
[in]_valuesthe vector of values
Returns
minimum

References numeric_limits::max(), and vector< T >::size().

◆ Pair()

PairOutput ignition::math::Pair ( const PairInput  _a,
const PairInput  _b 
)

A pairing function that maps two values to a unique third value. This is an implement of Szudzik's function.

Parameters
[in]_aFirst value, must be a non-negative integer. On Windows this value is uint16_t. On Linux/OSX this value is uint32_t.
[in]_bSecond value, must be a non-negative integer. On Windows this value is uint16_t. On Linux/OSX this value is uint32_t.
Returns
A unique non-negative integer value. On Windows the return value is uint32_t. On Linux/OSX the return value is uint64_t
See also
Unpair

◆ parseFloat()

double ignition::math::parseFloat ( const std::string _input)
inline

parse string into float

Parameters
_inputthe string
Returns
a floating point number (can be NaN) or 0 with a message in the error stream

References string::empty(), string::find_first_not_of(), NAN_D, and std::stod().

◆ parseInt()

int ignition::math::parseInt ( const std::string _input)
inline

parse string into an integer

Parameters
[in]_inputthe string
Returns
an integer, 0 or 0 and a message in the error stream

References string::empty(), string::find_first_not_of(), NAN_I, and std::stoi().

◆ precision()

T ignition::math::precision ( const T &  _a,
const unsigned int &  _precision 
)
inline

get value at a specified precision

Parameters
[in]_athe number
[in]_precisionthe precision
Returns
the value for the specified precision

References std::pow(), and std::round().

Referenced by Vector3< Precision >::Round(), and Quaternion< Precision >::Round().

◆ roundUpMultiple()

int ignition::math::roundUpMultiple ( int  _num,
int  _multiple 
)
inline

Round a number up to the nearest multiple. For example, if the input number is 12 and the multiple is 10, the result is 20. If the input number is negative, then the nearest multiple will be greater than or equal to the input number. For example, if the input number is -9 and the multiple is 2 then the output is -8.

Parameters
[in]_numInput number to round up.
[in]_multipleThe multiple. If the multiple is <= zero, then the input number is returned.
Returns
The nearest multiple of _multiple that is greater than or equal to _num.

◆ roundUpPowerOfTwo()

unsigned int ignition::math::roundUpPowerOfTwo ( unsigned int  _x)
inline

Get the smallest power of two that is greater or equal to a given value.

Parameters
[in]_xthe number
Returns
the same value if _x is already a power of two. Otherwise, it returns the smallest power of two that is greater than _x

References isPowerOfTwo().

◆ secNsecToDuration()

std::chrono::steady_clock::duration ignition::math::secNsecToDuration ( const uint64_t &  _sec,
const uint64_t &  _nanosec 
)
inline

Convert seconds and nanoseconds to std::chrono::steady_clock::duration.

Parameters
[in]_secThe seconds to convert.
[in]_nanosecThe nanoseconds to convert.
Returns
A std::chrono::steady_clock::duration based on the number of seconds and the number of nanoseconds.

◆ secNsecToTimePoint()

std::chrono::steady_clock::time_point ignition::math::secNsecToTimePoint ( const uint64_t &  _sec,
const uint64_t &  _nanosec 
)
inline

Convert seconds and nanoseconds to std::chrono::steady_clock::time_point.

Parameters
[in]_secThe seconds to convert.
[in]_nanosecThe nanoseconds to convert.
Returns
A std::chrono::steady_clock::time_point based on the number of seconds and the number of nanoseconds.

References std::chrono::duration_cast().

Referenced by stringToTimePoint(), and timePointToString().

◆ sgn()

int ignition::math::sgn ( _value)
inline

The signum function.

Returns 0 for zero values, -1 for negative values, +1 for positive values.

Parameters
[in]_valueThe value.
Returns
The signum of the value.

Referenced by signum().

◆ signum()

int ignition::math::signum ( _value)
inline

The signum function.

Returns 0 for zero values, -1 for negative values, +1 for positive values.

Parameters
[in]_valueThe value.
Returns
The signum of the value.

References sgn().

◆ sort2()

void ignition::math::sort2 ( T &  _a,
T &  _b 
)
inline

Sort two numbers, such that _a <= _b.

Parameters
[out]_athe first number
[out]_bthe second number

References std::swap().

Referenced by sort3().

◆ sort3()

void ignition::math::sort3 ( T &  _a,
T &  _b,
T &  _c 
)
inline

Sort three numbers, such that _a <= _b <= _c.

Parameters
[out]_athe first number
[out]_bthe second number
[out]_cthe third number

References sort2().

Referenced by MassMatrix3< T >::PrincipalMoments().

◆ splitTimeBasedOnTimeRegex()

bool ignition::math::splitTimeBasedOnTimeRegex ( const std::string _timeString,
uint64_t &  numberDays,
uint64_t &  numberHours,
uint64_t &  numberMinutes,
uint64_t &  numberSeconds,
uint64_t &  numberMilliseconds 
)
inline

Split a std::chrono::steady_clock::duration to a string.

Parameters
[in]_timeStringThe string to convert in general format
[out]numberDaysnumber of days in the string
[out]numberHoursnumber of hours in the string
[out]numberMinutesnumber of minutes in the string
[out]numberSecondsnumber of seconds in the string
[out]numberMillisecondsnumber of milliseconds in the string
Returns
True if the regex was able to split the string otherwise False

References string::empty(), string::erase(), string::length(), std::regex_search(), smatch::size(), std::stoi(), and time_regex.

Referenced by stringToDuration(), and stringToTimePoint().

◆ stringToDuration()

std::chrono::steady_clock::duration ignition::math::stringToDuration ( const std::string _timeString)
inline

Convert a string to a std::chrono::steady_clock::duration.

Parameters
[in]_timeStringThe string to convert in general format "dd hh:mm:ss.nnn" where n is millisecond value
Returns
A std::chrono::steady_clock::duration containing the string's time value. If it isn't possible to convert, the duration will be zero.

This will exist in C++-20

References string::empty(), and splitTimeBasedOnTimeRegex().

◆ stringToTimePoint()

std::chrono::steady_clock::time_point ignition::math::stringToTimePoint ( const std::string _timeString)
inline

Convert a string to a std::chrono::steady_clock::time_point.

Parameters
[in]_timeStringThe string to convert in general format "dd hh:mm:ss.nnn" where n is millisecond value
Returns
A std::chrono::steady_clock::time_point containing the string's time value. If it isn't possible to convert, the time will be negative 1 second.

This will exist in C++-20

References string::empty(), secNsecToTimePoint(), and splitTimeBasedOnTimeRegex().

◆ timePointToSecNsec()

std::pair<int64_t, int64_t> ignition::math::timePointToSecNsec ( const std::chrono::steady_clock::time_point &  _time)
inline

Convert a std::chrono::steady_clock::time_point to a seconds and nanoseconds pair.

Parameters
[in]_timeThe time point to convert.
Returns
A pair where the first element is the number of seconds and the second is the number of nanoseconds.

References std::chrono::duration_cast().

◆ timePointToString()

std::string ignition::math::timePointToString ( const std::chrono::steady_clock::time_point &  _point)
inline

Convert a std::chrono::steady_clock::time_point to a string.

Parameters
[in]_pointThe std::chrono::steady_clock::time_point to convert.
Returns
A string formatted with the time_point

References breakDownDurations(), std::fixed(), secNsecToTimePoint(), std::setfill(), std::setprecision(), and std::setw().

◆ Unpair()

std::tuple<PairInput, PairInput> ignition::math::Unpair ( const PairOutput  _key)

The reverse of the Pair function. Accepts a key, produced from the Pair function, and returns a tuple consisting of the two non-negative integer values used to create the _key.

Parameters
[in]_keyA non-negative integer generated from the Pair function. On Windows this value is uint32_t. On Linux/OSX, this value is uint64_t.
Returns
A tuple that consists of the two non-negative integers that will generate _key when used with the Pair function. On Windows the tuple contains two uint16_t values. On Linux/OSX the tuple contains two uint32_t values.
See also
Pair

◆ variance()

T ignition::math::variance ( const std::vector< T > &  _values)
inline

get variance of vector of values

Parameters
[in]_valuesthe vector of values
Returns
the squared deviation

References vector< T >::size().

Variable Documentation

◆ DPRCT_INF_D

const double DPRCT_INF_D = INF_D
static

◆ DPRCT_INF_F

const float DPRCT_INF_F = INF_F
static

◆ DPRCT_INF_I16

const int16_t DPRCT_INF_I16 = INF_I16
static

◆ DPRCT_INF_I32

const int32_t DPRCT_INF_I32 = INF_I32
static

◆ DPRCT_INF_I64

const int64_t DPRCT_INF_I64 = INF_I64
static

◆ DPRCT_INF_UI16

const uint16_t DPRCT_INF_UI16 = INF_UI16
static

◆ DPRCT_INF_UI32

const uint32_t DPRCT_INF_UI32 = INF_UI32
static

◆ DPRCT_INF_UI64

const uint64_t DPRCT_INF_UI64 = INF_UI64
static

◆ DPRCT_LOW_D

const double DPRCT_LOW_D = LOW_D
static

◆ DPRCT_LOW_F

const float DPRCT_LOW_F = LOW_F
static

◆ DPRCT_LOW_I16

const int16_t DPRCT_LOW_I16 = LOW_I16
static

◆ DPRCT_LOW_I32

const int32_t DPRCT_LOW_I32 = LOW_I32
static

◆ DPRCT_LOW_I64

const int64_t DPRCT_LOW_I64 = LOW_I64
static

◆ DPRCT_LOW_UI16

const uint16_t DPRCT_LOW_UI16 = LOW_UI16
static

◆ DPRCT_LOW_UI32

const uint32_t DPRCT_LOW_UI32 = LOW_UI32
static

◆ DPRCT_LOW_UI64

const uint64_t DPRCT_LOW_UI64 = LOW_UI64
static

◆ DPRCT_MAX_D

const double DPRCT_MAX_D = MAX_D
static

◆ DPRCT_MAX_F

const float DPRCT_MAX_F = MAX_F
static

◆ DPRCT_MAX_I16

const int16_t DPRCT_MAX_I16 = MAX_I16
static

◆ DPRCT_MAX_I32

const int32_t DPRCT_MAX_I32 = MAX_I32
static

◆ DPRCT_MAX_I64

const int64_t DPRCT_MAX_I64 = MAX_I64
static

◆ DPRCT_MAX_UI16

const uint16_t DPRCT_MAX_UI16 = MAX_UI16
static

◆ DPRCT_MAX_UI32

const uint32_t DPRCT_MAX_UI32 = MAX_UI32
static

◆ DPRCT_MAX_UI64

const uint64_t DPRCT_MAX_UI64 = MAX_UI64
static

◆ DPRCT_MIN_D

const double DPRCT_MIN_D = MIN_D
static

◆ DPRCT_MIN_F

const float DPRCT_MIN_F = MIN_F
static

◆ DPRCT_MIN_I16

const int16_t DPRCT_MIN_I16 = MIN_I16
static

◆ DPRCT_MIN_I32

const int32_t DPRCT_MIN_I32 = MIN_I32
static

◆ DPRCT_MIN_I64

const int64_t DPRCT_MIN_I64 = MIN_I64
static

◆ DPRCT_MIN_UI16

const uint16_t DPRCT_MIN_UI16 = MIN_UI16
static

◆ DPRCT_MIN_UI32

const uint32_t DPRCT_MIN_UI32 = MIN_UI32
static

◆ DPRCT_MIN_UI64

const uint64_t DPRCT_MIN_UI64 = MIN_UI64
static

◆ IGN_EIGHT_SIZE_T

const size_t IGN_EIGHT_SIZE_T = 8u
static

size_t type with a value of 8

◆ IGN_FIVE_SIZE_T

const size_t IGN_FIVE_SIZE_T = 5u
static

size_t type with a value of 5

Referenced by Matrix6< T >::operator()().

◆ IGN_FOUR_SIZE_T

const size_t IGN_FOUR_SIZE_T = 4u
static

size_t type with a value of 4

◆ IGN_NINE_SIZE_T

const size_t IGN_NINE_SIZE_T = 9u
static

size_t type with a value of 9

◆ IGN_ONE_SIZE_T

const size_t IGN_ONE_SIZE_T = 1u
static

size_t type with a value of 1

Referenced by Line2< T >::operator[](), Line3< T >::operator[](), and Vector2< T >::operator[]().

◆ IGN_SEVEN_SIZE_T

const size_t IGN_SEVEN_SIZE_T = 7u
static

size_t type with a value of 7

◆ IGN_SIX_SIZE_T

const size_t IGN_SIX_SIZE_T = 6u
static

size_t type with a value of 6

◆ IGN_THREE_SIZE_T

const size_t IGN_THREE_SIZE_T = 3u
static

size_t type with a value of 3

Referenced by Matrix4< T >::operator()(), and Vector4< T >::operator[]().

◆ IGN_TWO_SIZE_T

const size_t IGN_TWO_SIZE_T = 2u
static

◆ IGN_ZERO_SIZE_T

◆ INF_D

const double INF_D = std::numeric_limits<double>::infinity()
static

Double positive infinite value.

◆ INF_F

const float INF_F = std::numeric_limits<float>::infinity()
static

float positive infinite value

◆ INF_I16

const int16_t INF_I16 = std::numeric_limits<int16_t>::infinity()
static

16-bit unsigned integer positive infinite value

◆ INF_I32

const int32_t INF_I32 = std::numeric_limits<int32_t>::infinity()
static

32-bit unsigned integer positive infinite value

Referenced by ignition::math::eigen3::verticesToOrientedBox().

◆ INF_I64

const int64_t INF_I64 = std::numeric_limits<int64_t>::infinity()
static

64-bit unsigned integer positive infinite value

◆ INF_UI16

const uint16_t INF_UI16 = std::numeric_limits<uint16_t>::infinity()
static

16-bit unsigned integer positive infinite value

◆ INF_UI32

const uint32_t INF_UI32 = std::numeric_limits<uint32_t>::infinity()
static

32-bit unsigned integer positive infinite value

◆ INF_UI64

const uint64_t INF_UI64 = std::numeric_limits<uint64_t>::infinity()
static

64-bit unsigned integer positive infinite value

◆ LOW_D

const double LOW_D = std::numeric_limits<double>::lowest()
static

Double low value, equivalent to -MAX_D.

◆ LOW_F

const float LOW_F = std::numeric_limits<float>::lowest()
static

Float low value, equivalent to -MAX_F.

◆ LOW_I16

const int16_t LOW_I16 = std::numeric_limits<int16_t>::lowest()
static

16bit unsigned integer lowest value. This is equivalent to IGN_INT16_MIN, and is defined here for completeness.

◆ LOW_I32

const int32_t LOW_I32 = std::numeric_limits<int32_t>::lowest()
static

32bit unsigned integer lowest value. This is equivalent to IGN_INT32_MIN, and is defined here for completeness.

◆ LOW_I64

const int64_t LOW_I64 = std::numeric_limits<int64_t>::lowest()
static

64bit unsigned integer lowest value. This is equivalent to IGN_INT64_MIN, and is defined here for completeness.

◆ LOW_UI16

const uint16_t LOW_UI16 = std::numeric_limits<uint16_t>::lowest()
static

16bit unsigned integer lowest value. This is equivalent to IGN_UINT16_MIN, and is defined here for completeness.

◆ LOW_UI32

const uint32_t LOW_UI32 = std::numeric_limits<uint32_t>::lowest()
static

32bit unsigned integer lowest value. This is equivalent to IGN_UINT32_MIN, and is defined here for completeness.

◆ LOW_UI64

const uint64_t LOW_UI64 = std::numeric_limits<uint64_t>::lowest()
static

64bit unsigned integer lowest value. This is equivalent to IGN_UINT64_MIN, and is defined here for completeness.

◆ MAX_D

const double MAX_D = std::numeric_limits<double>::max()
static

Double maximum value. This value will be similar to 1.79769e+308.

Referenced by ignition::math::graph::Dijkstra().

◆ MAX_F

const float MAX_F = std::numeric_limits<float>::max()
static

Float maximum value. This value will be similar to 3.40282e+38.

◆ MAX_I16

const int16_t MAX_I16 = std::numeric_limits<int16_t>::max()
static

16bit unsigned integer maximum value

◆ MAX_I32

const int32_t MAX_I32 = std::numeric_limits<int32_t>::max()
static

32bit unsigned integer maximum value

◆ MAX_I64

const int64_t MAX_I64 = std::numeric_limits<int64_t>::max()
static

64bit unsigned integer maximum value

◆ MAX_UI16

const uint16_t MAX_UI16 = std::numeric_limits<uint16_t>::max()
static

16bit unsigned integer maximum value

◆ MAX_UI32

const uint32_t MAX_UI32 = std::numeric_limits<uint32_t>::max()
static

32bit unsigned integer maximum value

◆ MAX_UI64

const uint64_t MAX_UI64 = std::numeric_limits<uint64_t>::max()
static

64bit unsigned integer maximum value

◆ MIN_D

const double MIN_D = std::numeric_limits<double>::min()
static

Double min value. This value will be similar to 2.22507e-308.

Referenced by Quaternion< Precision >::Integrate().

◆ MIN_F

const float MIN_F = std::numeric_limits<float>::min()
static

Float minimum value. This value will be similar to 1.17549e-38.

◆ MIN_I16

const int16_t MIN_I16 = std::numeric_limits<int16_t>::min()
static

16bit unsigned integer minimum value

◆ MIN_I32

const int32_t MIN_I32 = std::numeric_limits<int32_t>::min()
static

32bit unsigned integer minimum value

◆ MIN_I64

const int64_t MIN_I64 = std::numeric_limits<int64_t>::min()
static

64bit unsigned integer minimum value

◆ MIN_UI16

const uint16_t MIN_UI16 = std::numeric_limits<uint16_t>::min()
static

16bit unsigned integer minimum value

◆ MIN_UI32

const uint32_t MIN_UI32 = std::numeric_limits<uint32_t>::min()
static

32bit unsigned integer minimum value

◆ MIN_UI64

const uint64_t MIN_UI64 = std::numeric_limits<uint64_t>::min()
static

64bit unsigned integer minimum value

◆ NAN_D

const double NAN_D = std::numeric_limits<double>::quiet_NaN()
static

Returns the representation of a quiet not a number (NAN)

Referenced by parseFloat(), and Line2< T >::Slope().

◆ NAN_F

const float NAN_F = std::numeric_limits<float>::quiet_NaN()
static

Returns the representation of a quiet not a number (NAN)

◆ NAN_I

const int NAN_I = std::numeric_limits<int>::quiet_NaN()
static

Returns the representation of a quiet not a number (NAN)

Referenced by parseInt().

◆ time_regex

const std::regex time_regex("^([0-9]+ ){0,1}" "(?:([1-9]:|[0-1][0-9]:|2[0-3]:){0,1}" "([0-9]:|[0-5][0-9]:)){0,1}" "(?:([0-9]|[0-5][0-9]){0,1}" "(\\.[0-9]{1,3}){0,1})$")
static